Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization
نویسندگان
چکیده
We present a novel approach for incorporating collision avoidance into trajectory optimization as a method of solving robotic motion planning problems. At the core of our approach are (i) A sequential convex optimization procedure, which penalizes collisions with a hinge loss and increases the penalty coefficients in an outer loop as necessary. (ii) An efficient formulation of the no-collisions constraint that directly considers continuous-time safety and enables the algorithm to reliably solve motion planning problems, including problems involving thin and complex obstacles. We benchmarked our algorithm against several other motion planning algorithms, solving a suite of 7-degree-of-freedom (DOF) arm-planning problems and 18-DOF full-body planning problems. We compared against sampling-based planners from OMPL, and we also compared to CHOMP, a leading approach for trajectory optimization. Our algorithm was faster than the alternatives, solved more problems, and yielded higher quality paths. Experimental evaluation on the following additional problem types also confirmed the speed and effectiveness of our approach: (i) Planning foot placements with 34 degrees of freedom (28 joints + 6 DOF pose) of the Atlas humanoid robot as it maintains static stability and has to negotiate environmental constraints. (ii) Industrial box picking. (iii) Real-world motion planning for the PR2 that requires considering all degrees of freedom at the same time.
منابع مشابه
Aas 13-439 Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming
This paper presents a decentralized, model predictive control algorithm for the reconfiguration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In our prior work, sequential convex programming has been used to determine collision-free, fuel-efficient trajectories for the reconfiguration of spacecraft swarms. This paper uses a model predictive contr...
متن کاملNon-Gaussian SLAP: Simultaneous Localization and Planning Under Non-Gaussian Uncertainty in Static and Dynamic Environments
Simultaneous Localization and Planning (SLAP) under process and measurement uncertainties is a challenge. It involves solving a stochastic control problem modeled as a Partially Observed Markov Decision Process (POMDP) in a general framework. For a convex environment, we propose an optimization-based open-loop optimal control problem coupled with receding horizon control strategy to plan for hi...
متن کاملSwarm Assignment and Trajectory Optimization Using Variable-Swarm, Distributed Auction Assignment and Model Predictive Control
This paper presents a distributed, guidance and control algorithm for reconfiguring swarms composed of hundreds to thousands of agents with limited communication and computation capabilities. This algorithm solves both the optimal assignment and collisionfree trajectory generation for swarms, in an integrated manner, when given the desired shape of the swarm (without pre-assigned terminal posit...
متن کاملSwarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming
This paper presents a distributed, guidance and control algorithm for reconfiguring swarms composed of hundreds to thousands of agents with limited communication and computation capabilities. This algorithm solves both the optimal assignment and collision-free trajectory generation for robotic swarms, in an integrated manner, when given the desired shape of the swarm (without pre-assigned termi...
متن کاملModel Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming
This paper presents a decentralized, model predictive control algorithm for the optimal guidance and reconfiguration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In previous work,J2-invariant orbits have been found to provide collision-freemotion for hundreds of orbits in a lowEarth orbit. This paper develops real-time optimal control algorithms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013